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Abstract. We discuss the behaviour of a crystalline'surface with a disordered subsmte. We 
focus on the possible existence of a super-mugh glassy phase, with height-height correlation 
functions which vary as the square logarithm of ,the distance. With numerical simulations we 
establish the presence of such a behaviour. that does not seem to be connected to finite-- 
effects. We cumment on the variational approach, and suggest that a more gMeral extension of 
the method could be needed to fully explain the behaviour of the model. 

1. Introduction 

Recently two letters 11, 21 (and a related comment 17.1) have stressed, by obtaining new 
numerical results, the interest of a problem that can be described in the first instance as that 
of the surface of a crystal deposited on a disordered substrate. 

The model has a long history. Renormalization-group ideas'were applied at first 13-51, 
while more recently the Mizard and Parisi [6] variational approximation has lead to the 
drawing of a quite different picture [7-91. 

The relevant universality class describes many and different physical situations. The 
first one, which we have already quoted, is the model of a crystal deposited on a disordered 
substrate. A second one is a two-dimensional array of flux lines with the magnetic field 
parallel to the superconducting plane in the presence of random pinning. Close to the phase 
transition (whose existence is predicted by renormalization-group and variational theory) 
the two models are expected to have the same critical behaviour. The universality class is 
that of the 2D Sine-Gordon model with random phases. 

Let us define our system. The dynamical variables of the model ,are the integral 
displacements d ( x , y )  of the surface from a disordered bidimensional substrate. The 
variables x and y take integral values from 1 to L. The number of points of the lattice 
is S = Lz. The displacements d ( x , y )  take positive, negative or zero integral values. 
The disordered substrate is characterized by quenched random heights p(x ,  y )  in the range 
(-:, +:), where a is the elementary step of the surface columns (and will be 1 in the 
numerical simulations). The total height of the surface on the elementaty (x. y )  square is 

h(x ,y)  =ad(& Y )  + P b ,  Y ) .  (1) 
5 E-mail address: marinari@ca.infn.it 
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The Hamiltonian of the system is 

where, in the numerical simulations, we will put the surface tension K equal to 2. The 
partition function will be defined as 

Z, e+H. (3) 

F = -1og2,. (4) 

(5)  

where we only take the two-dimensional vector 2 of the form (d, 0) or (0, d), and by (.) we 
denote collectively the average over the different realizations of the noise, over the different 
origins and the thermal average. 

In the Gaussian model with integral variables and no disorder, the surface is rough for 
T > TR [lo]. In the warm phase the C(d) of (5) behaves as log(d). When T c TR the 
surface becomes flat, glued to the ordered bulk. 

When one considers the case of a disordered substrate the situation is far less easy to 
analyse. The traditional approach to the problem is the one based on renormalization-group 
ideas, while only recently the variational approximation approach by M6zard and Parisi 
[6] has been applied to the problem. The results one obtains in the two approaches have 
something in common. Both approaches find that there is a transition at T = TR = 5. 
In the high-T phase thermal fluctuations make the quenched disorder irrelevant, and the 
systems behaves as the pure model. Here correlations behave logarithmically, i.e. 

(6) 

The differences come for T c TR. In the renormalization-group approach [3-51 one gets a 
new l o g d  dominant contribution. Here one finds that 

id(x.r)J 

We will consider a quenched substrate, i.e. the free energy F will be defined as - 
Here we will mainly discuss the height-height correlation function, which we define as 

C(d) = ((h(70 + 2) - h(%)’) 

T 
CT>r.(d) E ;log(d). 

C;:: (d) N a, log@) + a2 102 d (7) 
where a1 is non-universal, and a2 is 

The presence of such a super-rough phase (where by super-rough we imply a log’d 
behaviour of the height-height correlation functions) is indeed an interesting potential 
implication of the presence of quenched disorder. Such a behaviour would imply that 
the low-T phase is rougher than the high-T phase, which is quite unusual. At high T, 
thermal fluctuations are able to cany the surface away from the deep @ut not deep enough) 
potential wells due to the quenched disorder. So the roughening is the same as for the pure 
model. At low T the surface gets glued to the bulk. In the ordered case this makes the 
surface smooth, since the bulk is ordered. But in the presence of the quenched disordered 
substrate this effect does not smooth the surface, but, on the contrary, forces it to follow a 
very rough potential landscape. This mechanism could force a super-rough behaviour. 
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The application of the variational approximation [6] to this system 17-91 does not lead 
to the presence of a log’d term, but to a behaviour similar to the one of the high-T phase, 
with a slope of the logarithmic term which freezes at the critical point 

In section~3 we will try to argue that in some sense this .is an intrinsic l i t  of a too 
straightforward application of the variational approximation (originally discussed for systems 
with continuous replica-symmetry breaking [6]) to systems with a single-step broken replica 
symmetry, and we will suggest that a more complex approach could be needed in order to 
get a fair picture of this kind of system. 

A numerical analysis of [2, I] made the mystery even greater. Systems which should 
belong to the same universality class seem to show a very different behaviour. Reference 121 
was unable to detect any signature of the glass transition when measuring static quantities 
in a continuum random phase model, which, as we mentioned, should belong to the same 
universality class of our discrete model (but see the comment [2]). The authors of [I] study 
the model we have defined before, and numerically seem to detect a picture compatible 
with the variational ansatz. The approach suggested from Cule and Shapir seemed to us 
interesting, and worth pursuing further. It has motivated us to run further simulations and 
more analysis of the numerical data, and to look more closely at the theoretical problem of 
selecting the correct analytic approach. 

2. Numerical simulations 

We have run our numerical simulations on the APE parallel computer [Ill. Our code, 
written in a high level language and very elemenmy, ran at 20% of the theoretical maximal 
speed. The clear limit was the memory to floating point unit bandwidth, which our way of 
writing the problem was limiting us to 25% of the theoretical efficiency. It would surely 
be possible, and not very difficult, to rewrite the code to~obtain an efficiency close to 50%. 
Our code was running at a sustained performince close to one Gflops on an APE tube (with 
a theoretical optimal performance close to 5 Gflops). 

Our program was truly parallel, in the sense that each lattice was divided among 
many processors. For example, on an APE tube, which has 128 processors arranged in 
a three-dimensional tubular shape of 2 x 2 x 32 we were running a single lattice on four 
processors, and we were running in parallel 32 different random substrates in the Wid 
processor direction. With this approach the smallest lattice we could simulate is 4 x 4. Our 
actual runs have all been using L = 64 and L = 128, simulating 256 .different substrate 
realizations and by evolving two uncoupled replicas of the system in each random substrate 
(with a total of 512 systems). The average over the disorder was taken over 256 such 
realizations of the random quenched substrate. 

We have started from a high value of T, running simulations for decreasing T values. 
For L = 128 we have used temperatures of 0.9,0.8,0.7,0.65, OX, 0.45 and 0.35, while for 
L = 64 we have used the values 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.50, 
0.45,0.40,0.35 and 0.30. At each T value our run started from the last configuration of the 
higher T value. We have been very conservative in requesting a long thefmalization. At 
each T value we have added for L = 64 0.5 million full Monte Carlo sweeps of the lattice 
(0.7 million for L = 128). and then we measured the correlation functions 100 times during 
100000 further lattice sweeps. That turned out to guarantee a good statistical determination 
of the correlation functions. To check in more detail we have chosen two T values, one in 

”. 
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the warm phase and one in the cold phase, i.e. T = 0.60 and T = 0.35 for L = 64. On 
this lattice, starting from the final configurations, we have first added a series of 1OOOOO 
more lattice sweeps, and measured expectation values again. Then we have repeated the 
procedure (all the measurements and the statistical analysis) by doubling the added run (i.e. 
with 200000 added sweeps), and by doubling it again (with 400000 added sweeps), and 
again (with 800000 added sweeps). For both T values all results were compatible, and no 
transient effects were detected. The data points for the L = 128 are always very similar 
to the ones on the smaller lattice, in all our range of temperatures. The dynamics was a 
simple Metropolis Monte Carlo simulation. 

Let us note that all our numerical data are fully compatible (even if based on larger 
lattices and better statistics), as far as we have been able to check, with the data of 111 .  
What differs here is the analysis of the data, and the fact that a more extensive data sample 
allows us to look in better detail at the relevant quantities. Here we will detect a small 
effect, and the high statistics we have is crucial to being sure it is significant. We stress the 
importance of comparing the full set of correlation functions, at all distances, with the lattice 
form computed on the same value of the lattice size L. We also believe it is important to 
use the discrete form both for picking up the logarithmic behaviour and for picking up the 
super-rough behaviour which is dominated by a squared logarithm. 

The lattice Gaussian propagator, which reproduces, in the continuum limit, the 
logarithmic behaviour, is 

As we have already stressed we also need a lattice transcription of the squared logarithmic 
term. It is natural to take 

Pf’)(d) = PL(d)’. (11) 
These are indeed the terms we have used to fit our numerical data and to try to distinguish 
a logarithmic behaviour from a different asymptotic law. 

In the following we will be comparing two possible behaviours of the correlation 
function C(d) .  One is the Gaussian scaling 

(12) C(d) = a0 -b alPL(d) 
while the second includes a quadratic term, i.e. 

C(d) =ao+a lP~(d)+azP ,” .  

We stress that we are using the form (13) (and specifically we choose P,”’ for describing 
the lattice squared logarithmic dependence) as an educated, reasonable guess, and that it 
does not originate from an analytic calculation. The three coefficients depend on T .  

In the high-T phase, the Gaussian fit to the correct lattice propagator is very successful, 
and the non-Gaussian best fit gives a nonlinear contribution compatible with zero. In this 
region we do not encounter any problem. 

In the following we will discuss the low-T region, and we will use as an example the 
temperature T = 0.45. In figure 1 we plot the measured correlation function C(d)  versus 
the lattice Gaussian propagator, at T = 0.45 on a lattice of size L = 128. A linear fit 
looks quite satisfactory at this level. The discrepancy at short distances is not necessarily 
worrying, since we expect short distance modifications to the asymptotic behaviour. We 
note for future comparison that here the best fit gives 

(14) 
(of1 poinrr) 

CBineor) (d )  = -0.02 + 0.62P~(d)  
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0.5 1 

/ 
Figure 1. The meaured conelation function C(d) veaw the lattice Gaussian propagator, at 
T = 0.45 on a lauict of size L = 128. The straighr line is our best fit to a linear behaviour, by 
using all distance data points. 

by using all data points in the fit. Let us now note that in this fit and in all the following 
except for the quadratic one (equation (17)) the errors (which we have estimated by a jack- 
knife approach) are very small, of the order or smaller than one per cent. All the best 
fits have been found to be exact minimization of the x z  function, since in all cases it is 
quadratic in the parameters. The estimated linear coefficient is exactly what one finds in 
the variational approach (since the lattice propagator is equal, in the continuum limit, to 
(constant + &log@))). A quadratic fit works very well here, but since it has one more 
parameter than the linear fit let us ignore this fact for a moment. The quadratic fit of 
(17), with three free parameters and discarding 10 distance points, has, on the contrary, 
a very large error, but we report it for the indications it gives about the reliability of the 
value we quote for the quadratic coefficient (see the following discussion). Fitting including 
distance points starting, for example, from d = 4 would give an accurate determination of 
all parameters. 

As a next step in figure 2 we plot C(d) divided by the lattice propagator PL(d) as a 
function of PL(~). Linearity of this quantity as a function of PL(~) implies the presence of 
a log' term in C ( d ) .  The effect is very clear, and the evidence for the presence of such a 
contribution is unambiguous. We find here that 

again by using data points from all distances. 
The only concem we are left with is that in the previous analysis we have used all 

distance points, while we are ttying to resolve a long distance behaviour. We have to be 
careful not to be mislead by short distance artifacts, which could obscure the true long 
distance behaviour. In order to play safe, in figure 3 we plot both C(d) and a 
function of PL(d) for distances larger than 10 lattice units, and our best fits are done using 
only these distance points. In this case we fit C ( d )  both to the linear and to the quadratic 
form. We get 

(16) (d>10) C(,ifiearl(d) 5 -0.06 + 0.69P~(d)  
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Figure 3. The measured correlation function C(d) and the measured correlation function divided 
by the lattice Gaussian propagator versus the lattice Gaussian propagator, at T = 0.45 on a lattice 
of size L = 128, aftex discarding the fuTt ten distance points. The straight cantinuous lines are 
our best fits to a linear behaviour, while the dotted line is the h t  fit to B quadratic behaviour 
of the function C(d). 

that is very similar to ow previous fit, and 

C~$~&ic)(d) = -0.014 + 0.56P~(d)  + O.O93Pf)(d) , (17) 
The most remarkable result is for the ratio we get 

with a very small x z  and in complete agreement with what we got by fitting all data points. 
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Two comments about two remarkable facts are in order. First, the linear Coefficient of the 
best fit for the ratio is equal to the quadratic coefficient of the best fit for C(d), and the 
constant coefficient in the ratio fit is equal to the linear coefficient of the quadratic fit to 
C(d). Second, discarding ten short distance points does not change the results for the linear 
and the quadratic contribution. We are definitely not looking at a short distance effect. The 
variational approximation predicts a short to long distance crossover in the coefficient of 
the logarithmic term. Even if from our numerical simulation we cannot reach conclusions 
about the short distance region, the same analysis done previously shows that the effect we 
are measuring is a genuine long distance one, and cannot be exclusively due to this transient 
behaviour. Let us also notice that the reader could think that since the error on the different 
points of the divided C(d) of figure 3 are quite large the slope has to be compatible with 
zero. This is not true since the data points (different correlation functions for different d 
values) are highly correlated, and the error over the slope has to be estimated directly. We 
have presented evidence that the value of the slope is non-zero. 

The fit to the form (13) gives a very good result both in the warm phase (where it 
'coincides with the Gaussian fit) and in the cold phase. The presence of a lattice term 
corresponding to a continuum log2 d behaviour accounts very well for our numerical data. 
In figure 4 we  show^ the coefficients a1 and a2 from our best fits in all the temperature 
range we have explored @ere we use all distance points). The full curves are only a visual 
aid, smoothly joining the numerical data points. The coefficient of the nonlinear term Pi') 
becomes sizeably different from zero close to the critical temperature T, = f. The effect 
is quite clear and convincing. The coefficient a, is not the one of the log(d) term in the 
continuum limit, that is renormalized by a contribution coming from the P f ) ( d )  term. We 
find that the coefficient of the continuum 102 term is in the order of 5 times smaller than 
the universal value we would expect from the RG computations. This is a fact that will 
have to be understood in bener detail. The linear dependence of a1 over T with the correct 
coefficient in the high-T phase, where a2 = 0, is very clear. 

We believe that the previous evidence clearly shows that the ansatz of a purely Gaussian 

, C l , ,  , , I , ,  , , I , ,  , 
0.20 - 

2 0 . 1 0  o,tsl 
T 

Figure 4. The coefficients 01 and 02 from OUT best fits to the form (13) verms the temperature 
T in all the tempemre range we have explored. Here L = 128. Rads for L = 64 (not 
shown) are very similar. 
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Figure 5. ?he Binder parameter BPI as a function of T for the two values of the lattice size, 
L = 64 and L = 128. 

probability distribution does not explain the behaviour of the system for T < TR, while 
the hypothesis of a super-rough phase, with a l o 2 d  behaviour of the correlation functions, 
matches the numerical findings very well. In order to gather more information about this 
glassy phase we have looked at the probability distribution of 

A - h - h '  (19) 
where h' is a first neighbour of h. In order to monitor the shape of the probability distribution 
we plot in figure 5 the related Binder parameter defined as 

BL is zero for a Gaussian distribution, and 1 for a &function. In our measurement it is very 
small in the warm phase, calling again for a very Gaussian behaviour. On the contrary in 
the low-2' phase we get a non-trivial shape. Here BL is definitely non-zero, non-one, and in 
our T range does not seem to depend on L. This again shows that in the cold phase there 
is a non-trivial behaviour. A value of BL which is non-trivial (non-0 and non-1) and does 

' I' not depend on i is reminiscent of a Kosterlitz-Thouless situation. Further analysis will be 
required to reach a better understanding of the, characteristic features of the low-2' phase. 

3. Some comments on the variational approach 

We have already argued that the numerical results presented above do not coincide with 
the analytical predictions either of the renormalization-group or of the Gaussian variational 
approach. From the qualitative standpoint, the disagreement is even stronger with the latter 
since it predicts that the asymptotic correlation function grows only logarithmically with 
the distance. Consequently, one has a right to wonder how much the Gaussian variational 
approach is trustworthy. Some general remarks on this issue will be given in this section. 

As argued by M6zard and Parisi in their original paper [6], the Gaussian variational 
theoiy (GVT) is exact for the theory of an N-component field $(%) in the limit N + w 
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(while the model considered in this paper corresponds to N = 1). This may be easily 
understood by noticing that the GVT coincides with the Harttee-Fock partial resummation 
of the graphs <ue~ to the interaction potential Jetween the replicas [6]. If the quenched 
potential V(m, q4) seen at point z by the field $5 is itself a Gaussian variable of zero mean 
and variance V ( z ,  ~)V(X!, a) = 8(z-zJ)R(~-$) that is, with apurely local interaction, 
then the tadpole contribution to the self-energy oUb(k) between two different replicas a and 
b will not depend upon the momentum k and will only result in renormalization of the 
mass term. When the solution of the variational equations turns out to be consistent with a 
continuously replica broken mass term u(u)  (where 0 < U < 1 is the distance between the 
replicas), this is not a serious limitation and non-trivial exponents may be found [6, 8, 91, 
related to the small-u behaviour of U@). On the conhary, when the solution consists of 
a finite number of breaking steps as in the present case, there is no such small k-small U 
crossover, and the full propagator is proportional to the bare propagator at small k (when 
u(0) = 0). This explains why the one-step solution found in [8, 91 necessarily leads to a 
logarithmic growth of~the correlation function which corresponds to the free behaviour, the 
only non-trivial prediction being the freezing of the coefficient of proportionality under TR 
(see equations (6) and (9)). Obviously the fact that the correct solution is the one broken 
at one step is very non-hjvial. 

An important example where the Gaussian ansatz leads to erroneous results is the 
random field king model (RFIM). Recently, Mizard and Young proposed a general method 
of adding momentum-dependent contributions to the self-energy uUb(k) by considering a 
self-consistent expansion in 1 j N  of the variational free energy [12]. Applying this method 
to the RFIM, they were able to show that the new graphs at 0(1/N) improved the Gaussian 
ansatz and were sufficient to break the so-called dimensional reduction coming from the 
usual perturbation theory, and which, of course, held at the Gaussian level. Such an approach 
could also be used to improve our theoretical understanding of the model studied in this 
paper. It suffers, however, from a mathematical difficulty related to the absence of solutions 
uab(k) with a finite number of steps of breaking, forcing one to look for a fully broken 
mass u(k,  U). So far, no solution has been found in the case of the RFIM and one would 
probably have to face the same difficulties for the random Sine-Gordon model. 

Beyond the quantitative calculation of the critical exponents, an important feature of 
the GVT is that it leads to a simple determination of the phase diagram of the model studied 
here. In this respect, the figures 4 and 5 seem to indicate that the distribution of the 
height differences A defined in (19) differs from a Gaussian even at temperatures higher 
than the usual theoretical prediction TR = f. As the two cuwes for the sizes L = 64 
and L = 128 coincide quite well, finite-size effects can apparently not account for this 
discrepancy. Some preliminary analytical'results we have obtained using the GVT above 
TR hint at a possible dynamical transition [I31 at a temperature Td (Td t TR) whose value 
depends on the amount of disorder given by the variance of the quenched displacement field 
d(x, y )  (see the introduction). If this were so, there would already exist, at the temperature 
Td, an exponentially large number (in L2) of metastable states and the system would only 
partially 'thermalize' in these traps. Both numerical and analytical work is currently in 
progress to investigate this important issue. 

4. Conclusions 

The results we have obtained describe a very complex' picture.. A super-rough behaviour 
does indeed seem to exist, implying that the GVT does not fully account for the behaviour 
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of the model. Here we are discussing very small effects, so we cannot completely exclude 
that we are not looking at a transient behaviour, but that does not seem likely. On the 
other hand the coefficient of such a nonlinear term seems to be, far beyond the statistical 
and systematic error, different from the one obtained with an RG computation. Also, the 
Binder parameter looks non-trivial even in the beginning of the to-be warm phase (that is 
maybe not the warm phase yet), suggesting the presence of a complex scenario also for 
temperatures T on the order of 0.8. 

We have argued that from a theoretical viewpoint we have some understanding of what 
is happening. W e  hope we will succked in deepening this understanding in the near future. 
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Note odded. Afrer this work was completed we received an interesting paper by I Kierfeld [14], which discusses 
the possible replica-symmetry breaking solutions to tk renormalization-group equations. The instability of the 
replica-symmetric solution, noticed in [IS], is discussed in the context of a large sector of admissible solutions. 
In this scenario a n o n - m  coefficient for the square logarithmic contribution, different from the one predicted by 
replica-symmetric RG. seems a plausible issue. 

Obviously, the fact that the coned solution is a one-step breaking is non-trivial. We would. however, lie to 
underline that dimension D = 2 plays a special role in this respect. Both the choice of the interaction potential 
and the dimension of the space influence the nature of the RSB variational ansatz (either one-step or continuous). 
It has been found [6] that D = 2 is the borderline between the one-step solution and the continuous one and that 
the mssover between the two regimes is smooth. In other words, when D -+ 2, the slope of the continuous fully 
broken solution goes to infinity and the solution becomes one-step like. Therefore. it Seems that at D = 2 all 
solutions have either a uue one-step or an almost one-step behaviour. 

We have also mn some numerical simulations in the cold phase with a cold start (in order to be SUE we are 
not measuring effects due to trapping in metastable states visited thaoks to the slow cooling). In this way we have 
reproduced the results discussed in the l e m ,  making clearer the fact that we really have thermalized our system. 
We thank D Cule and Y Shapir for friendly advice on this maner. 
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